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ASRP Tactical Vision

m WideAreaHSI Search (Day/Night)

m On board Real-Time Processing
UsesHSI for Aided Target
Recognition

m EO/TIR Cued Operation from HS|

= High Spatial Resolution EO/TIR
Image Chips

VNIR/SWIR/LWIR (100-300 bands)

Counter CC&D/SMO
Vehicles and Camouflagein The Open,
Shadows, and TreeLines




ASRP Target Detection
and Cueing Concept

= Hyperspectral detection of camouflaged and
concealed mobile tactical vehicles

= Algorithm-based detection processing
m Detection-cued imagery

Airborne Platform /
L

Hyper spectral Sensor Real Time Processor High Spatial Res
+100-300 bands ’ -Detects Targets EO/TIR Camera
*1m Scale Spatial Res +Cues EO/TIR Imagery *High NIIRS
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Target Detection Challenge
(Ailded Target Recognition)

Detection Map Image Chips

Detectsroad

4 Detectsisolated tree

Standard metric: Ppvs. FAR Goal: High Ppand Low FAR Benefit: LessWarfighter Load




Adaptive Spectral
Reconnaissance Program (ASRP)
FY97-FY 00

= Goal: Build thetechnical underpinnings for future h

MSI/HSI systemsto counter camouflaged, and concealed
. surfacetargets P

= Approach: Focus attention on 4 key technology thrusts )

- Analytic models and algorithms
- Dataanalysis/ signature database
- LWIR sensor development
\____- Datacollections/ demonstrations /

/

m Plan: Transition HStechnology to air borne platforms
(TUAV, ARL/ACS, HAE UAV and MAE UAV)

g J
" m Legacy: )
— Performance prediction tools

— Robust-low FAR target detection algorithms

— “Book” on VNIR/SWIR target detection
- Phenomenology database J




Technology Challenges

= Modelsand toolsfor performance prediction/trades
m Algorithms (high Po/low FAR) = Reduces analyst |oad

m Compact LWIR HSI and TIR imager sensors
— Spectral/spatial resolution, low NESR (SWAP)

m High-throughput real-time airborne processors



Modeling

mHyper spectral System Image M odel (HySIM)

HSI HSI issio
Senso ploitati forma
oolkits gorith aluatic

HySIM + SST
ASRP/BAMS (DARPA/AFRL)
End-to-End HSI System
Performance Model
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Database
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Actual

Preliminary M odeling Results

(NVIS/VNIR)
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Algorithm Development

Challenge: Target detection algorithms must overcomethe high variability of targets
and backgroundsin a scene; multiple algorithms and fusion offer a potential solution

Approach: Evaluate current SOA, include new algorithms (Red Team recommend)*

| mplement multiple algorithms (>3) using fusion and in real time
| nclude advanced preprocessing, core detection, and postprocessing

Evaluating Analysis & Verification
| T\ Assembly )
« Anomaly Detection
— R-X (local/stochastic) . : :
Analysis Data gollectlon and analysis
e Clustering & — flights
_ SEM (global/stochastic) Fusion — ground truth
— imagetruth |
« Linear Unmixing — model comparison
N - — validation
— ORASI S (global/deter ministic) (High o
P/Low « Significant target and
* Recognition /Atmos. Correction FAR) background data
— PALM/VANTAGE (reflective)® — 9 collects ~1.5TBytes
— ISAC (emissive)*

J J



= Algorithm Segmentation/Selection

Hyperspectral Imager Data
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Detector 1 Statistic

r1=1.616
r2=1.162
m Bivariate gamma model al1=0.228 5
can be “fit” to a2=0.354 mu
standardized detector rho=0.327
outputs
Joint PDF Fit w/ Parameters

Estimated by L east-Squares

m Algorithmsarefused with joint decision statistic

m Goodness-of-fit over local/regional areas determines applicability of each

particular algorithm

10



Probability of Detection

Fusion Results
NVIS Lechiguilla Scene

= AND/OR fusions of RX and SEM (at equal-Pfa thresholds) perform worse than
the best single detector (SEM)

m Joint fusion threshold tests outperform RX and SEM in the high-Pd regime
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HSI Military Payoff

m Addressesthecritical gap in the detection of camouflaged

vehiclesin the open and tar gets concealed in treelines and
In shadows --- K 0sovo shortcoming

= Improvement in tactical productivity and situation
awar eness through “aided” target detection and
recognition capabilities

s Enhancement of P, and snortened time-linesin difficult

target detection scenarios by cueing PGM s and other
weapons platforms
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